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ABSTP CT:K comprehensive theory of stochastic realization for
multivariate stationary Gaussian processes is presented. It is
coordinate-free in nature, starting out with an abstract state
space theory in Hilbert space, based on the concept of splitting
subspace. These results are then carried over to the spectral do-
main and described in terms of Hardy functions. Each state space
is uniquely characterized by its structural function, an inner
function which contains all the systems theoretical characteristics
of the corresponding realizations. Finally coordinates are intro-
duced and concrete differential-equation-type representations are
obtained. This paper is an abridged version of a forthcoming
paper, which in turn summarizes and considerably extends results
which have previously been presented in a series of preliminary
conference papers. ' ..

1 1. INTRODUCTION

In recent years there has been a considerable interest in var-
ious versions of the so-called stochastic realization problem

0.. [1-311, which, loosely speaking, can be described as the problem
of finding (a suitable class of) stochastic dynamical systems,

I= called reaZizations, all having a given random process {y(t); t c T)
Sas its output. (Here T is the index set, which usually is the real
_=_ line R or the set Z of integers.) In the past it has often been
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assumed that y is a stationary (or stationary increment) process
with rational spectral density, thus insuring the existence of
finite dimensional realizations.

The early papers on the subject 11-3] consider a deterministic
version of the problem, the objective being to realize (in the de-
terministic sense [32,33]) the spectral factors of the given pro-
cess which is defined up to second-order properties only. The
probabilistic aspects of the stochastic realization problem were
subsequently clarified in [8-10]. In all these papers the states
of the realizations are represented in a fixed coordinate system to
avoid trivial questions of uniqueness.

However, the most natural approach to the stochastic realiza-
tion problem is coordinate free: Begin by constructing families
{Xt; t c T) of state spaces which evolve in time in a Markovian
manner. These state spaces should be as small as possible, but
large enough to contain the essential information for determining
the temporal evolution of the given process. Then, for each such
family, concrete realizations can be obtained by introducing suit-
able bases in the state spaces. This line of study was initiated
in [4-6], where a restricted version of the problem of this paper
was studied, considering only state spaces contained in the closed
span of the past (or, symmetrically, the future) of the given pro-
cess. With such a state space approach we need not restrict the
analysis to processes with rational spectral density, since the
frame work will also accommodate infinite dimensional state spaces.

During the last couple of years we have been developing a state
space theory of stochastic realization which is now in a reasonably
complete form. Part of our work has been reported in a series of
preliminary conference papers [11-15]; a more complete account will
appear in a forthcoming paper [16], which is now under preparation.
Some results in the first phase of this work were obtained in co-
operation with Ruckebusch [17], who parallelly developed his own
geometric state space thcory [20,21]. The present paper is an at-
tempt to summarize the results presented in [16]. Due to page
limitations, not all topics of (16] will be discussed. Also we
have left out the proofs of the theorems, instead providing the
reader with references for the proofs. For simplicity, only reali-
zations of continuous-time stationary processes will be discussed,
but it should be understood that our basic geometric theory holds
also for stationary increment processes and discrete-time processes,
and that the subsequent spectral theory can be appropriately modi-
fied to take care of these cases also.
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2. PROBLEM FORMULATION

Let {y(t); t c R) be a real stationary m-dimensional Gaussian
process which is purely nondeterministic, mean-square continuous
and centered, and let H be the Gaussian space [34] generated by y,
i.e. the linear span of the stochastic variables {yk(t); t e R,
k = 1,2,...,m) closed in L2 norm. The space H is a Hilbert space
when endowed with the inner product (&,n) = E{n}, where E{.} stands
for mathematical expectation. For any two subspaces A and B of H
(which are always taken to be closed), A v B denotes the closed
linear hull of A and B, EA denotes the orthogonal projection on A,
and EAB signifies the closure of EAB. Moreover, let A' denote the
orthogonal complement of A in H, and let A e B be the orthogonal
complement of B in A, implicitly implying that A is a subspace of
B. Since y is a stationary process, there is strongly continuous
group {Ut; t c R} of unitary operators H - H such that Yk(t) =
Utyk(O) for all t and k = 1,2,...,m [3S]. In the sequel we shall
also consider the two semigroups {Ut; t a 0} and {0 t; t a 0} ob-
tained by setting Ut := Ut and Ut := U-t for t a 0.t ccecn FJo

The first problem at hand is to determine families {Xt; t e R}|
of subspaces of H, such that D1'!,

Yk(t) c Xt  ; k = 1,2,..., m (2.1) J . '. -

for all t, which are Markovian in the sense that Bc ..... .

EXIX EXtX for all X c X+ (2.2) -Avcll1 :t, C

ti-

where X- :uVT<tXr and 4 :=VT>tXT , and which are etationar'y, i..e
satisfy the condition

Xt =UX forall t R . (2.3)

The subspaces {Xt } will be called state spaces. This is a gener-
alization of the following more concrete problem: Find a vector-
valued stationary Markov process {x(t); t c R) and a matrix C so
that y(t) = Cx(t) for all t c R. However, as we shall see in Sec-
tion 9, (in a strict sense) the latter problem generally makes
sense only if the spectral density of y is rational, in which case
there are finite dimensional Markov processes x. To circumvent
this difficulty we would have to consider weak Hilbert space-valued
Markov processes. Problem formulation (2.1)-(2.3), on the other
hand, is coordinate free and makes sense without further restric-

tions or modifications.

In view of condition (2.3), it is enough to requi., that
(2.1) and (2.2) hold for one t, say t = 0; then they will automati-
cally hold for all t c R. For simplicity we shall drop the index
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and write X instead of X0 . Now define the past space H- and the
future space H* as the closed linear hulls in H of the stochastic
variables {yk(t); ts 0, k = 1,2,...,m} and {ykCt); t a 0,
k = 1,2,... ,m} respectively. Then, it follows from (2.1) that
H- v X c X- and that H c X*. Consequently applying the projection
EH-vX to (2.2) with t = 0 we obtain

EH-vXX = EXX for all X cH + . (2.4a)

It is easy to show [15] that the symmetric condition

H vX X
EH X = EX for all X c H- (2.4b)

is equivalent to (2.4a). A suluspace satisfying one of conditions
(2.4) is called a splitting subspace. Loosely speaking, such a
subspace contains all information about the past needed in predict-
ing the future, or, equivalently, all the information about the
future required to estimate the past.

PROPOSITION 2.1. [14]. Let X be a subspace of H and let
S := H- v X and := H+ v X. Then the family {UtX; t E R} satis-
fies conditions (2. 1) and (2, 2) if and only if X is a splitting
subspace such that

tS C S for all t z 0 (2.Sa)

and

ad Ut c S for all t 0. 
(2.Sb)

In view of this proposition we shall say that a splitting sub-
space is Markovian if it satisfies conditions (2.5). Hence we can
instead consider the problem of finding Markovian splitting sub-
spaces. This problem formulation has the advantage of also cover-
ing situations which are not discussed in this paper, e.g. realiza-
tion of processes with stationary increments and discrete-time
processes, for which problem formulation (2.1)-(2.3) is too restric-
tive (since it does not allow for observation noise, for example).
Hence the basic geometric theory developed below has a wider appli-
cability, as we shall demonstrate in some subsequent papers.

Obviously the whole space H is a Markovian splitting subspace,
and so are H- and H4, but they are too large for our purposes.
Indeed, the whole idea is to obtain "data reduction." Therefore
we shall be particularly interested in (Markovian) splitting sub-
spaces X which are minimal in the sense that there is no proper
subspace of X which is also a (Markovian) splitting subspace. The
following proposition implies that a minimal Mfarkovian splitting sub-

11space is the same thing as a Markovian minimal splitting subspace.
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PROPOSITION 2.2. [16]. Any minimal Markovian splitting subspace isa minimal splitting subspace.

When the Markovian splitting subspaces have been adquately
characterized, there remains the problem of obtaining concrete dy-
namical representations of the given process y based on these state
spaces, if possible of differential equation type. Note that we
are only considering representations for which the state spaces are
contained in the Hilbert space H generated by the given process (or
its increments), i.e. internal realizations. Our theory could be
modified to accommodate realizations containing exogeneous random
elements (external realizations), but this is outside the scope of
this paper, being a bit unnatural in the present setting.

3. THE GEOMETRY OF SPLITTING SUBSPACES

Our first problem will be to determine the set of all splitting
subspaces, and, in particular, those which are minimal.

The predictor space

X_ := EHH+ (3.1)

is a splitting subspace. To see this, note that, for all X e H4,
EH-A c X_; hence EH- = EX=EHA EX-X. Mo-eover, all splitting
subspaces X c H- contain X_. In fact, by (2.4a), EH-H = EXH + which
is contained in X. Hence X_ is a minimal splitting subspace. By
symmetry, we see that the backward prediction space

X+ := gH+H- (3.2)

I I is also a minimal splitting subspace. (The reader is urged to care-

fully distinguish between X_ and X and X and X* defined in Sec-
tion 2. The reason for the former notation will be clear from what

msrfoldlows.)

PROPOSITION 3.1. [14]. The spaces H, H- and H+ have the orthogonal
decompositions

H = N- 9 I N+ , (3.3a)

H= N- 0 X and H+ = N+ * X , (3.3b)

where HO := X. v X+, N- := H- n (H+)- and N = H+ A (H).

The space Ho is called the frame space and N- and N are
called the (past respectively the future) junk spaces. These nota-
tions are suggested by the following result.
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PROPOSITION 3.2. [14]. Let X be a minimal spZitting eubapace.
Then

H- n H* c X c Ho (3.4)

Hence the frame space Ho is the closed linear hull of all min-
imal splitting subspaces, and consequently it contains all "infor-
mation" needed for state space construction. On the other hand,
the junk spaces contain no useful information and could be dis-
carded. It is not hard to see that the frame space is itself a
(generally nonminimal) splitting subspace. The following proposi-
tion illustrates the importance of these concepts in filtering
theory. It should be compared with the corresponding result in
[20], which is weaker.

PROPOSITION 3.3. [16]. Let X be a spZitting subspace. Then

E H-x = X. (3.5a)

if and only if X ± N-, and symetricallZy

E H+x = X+ (3.Sb)

if and only if X . N".

We shall say that the given process y is noncyclic if it has
nontrivial junk spaces, i.e. N- % 0 and N g 0, and strict y non-
cycZic if N- and N are both full range. (A subspace A c H is
fulZ range if the closed linear hull of {UtA; t c R) in H is all
of H.) In the scalar case (m = 1) strict noncyclicity is the same
as noncyclicity. Clearly the problem of state space construction
is not very interesting unless we have noncyclicity, since other-
wise there will be no "data reduction," H- and H being minimal
splitting subspaces.

In order to describe the set of splitting subspaces, we need
to introduce the concept of perpendicular intersection. Two sub-

II spaces of H, A and B, are said to intersect perpendicularly if

EAB = An B (3.6a)

or equivalently [15]

EA A n B . (3.6b)

If A and B together span all of H, we have the following character-

ization of perpendicular intersection.
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PROPOSITION 3.4. [15]. Let A and B be szbspaces of H such that
A v B a H. Then A and B intersect perpendicularly if and only if
B1 c A or, equivalently, Ak c B.

Now, if H- and H* intersect perpendicularly,t Ho = H- n H ,

and consequently there is a unique minimal splitting subspace,
namely H- n H (Proposition 3.2). Hence the problem of finding the
minimal splitting subspaces is trivial. In general, however, H-
and H do not intersect perpendicularly, but, by appropriately ex-
tending H- and H* so that the extended spaces intersect perpendicu-
larly, we can still describe each splitting subspace as the inter-
section between two subspaces.

THEOREM 3.1. [15). The subspace X c H is a splitting subepace if

and only if

X = S n (3.7)

for some perpendicularly intersecting subspaces S and S such that
S D H- and S D H*. The correspondence X --. (S,S) is one-one, the
pair (S,S) being uniquely determined by relations

S = H- v X (3.8a)

and

S = H* v X (3.8b)

COROLLARY 3.1. A subspace X c H is a splitting subspace if and
only if there are subspaces S : H- and H+ such that one of the
following four equivalent conditions hold

X = (3.9a)

X= ES (3.9b)

X aS S (3.9c)

X e S "  (3.9d)

A subspace S such that S D H- (S D H+ ) will be called an aug-
mented past (future) space. Hence, each (minimal or nonminimal)
splitting subspace is uniquely characterized by two perpendicularly
intersecting subspaces S and 9, one being an augmented past space

Tt
For a process y with rational spectral density t, H- and H inter-
sect perpendicularly if and only if 0 has no zeros, i.e. y is a
"purely autoregressive" process.



and one an augmented future space. We shall write X (S,S) to re-
call this correspondence. For example, X. - (S_,g_) where S =
H- v X_ = H- and S_ = H* v +X_ = (N')L (Proposition 3.1). Likewise,
X+ ~ (S+,S+) where S+ = (N+)± and = H+.

To have X minimal we clearly need to make S and 9 as small as
possible. Given an S, the smallest 9 which both contains H+ and
intersects S perpendicularly is

=H + v S (3.10a)

(Proposition 3.4). Likewise, given 9,

S = H- v 9 (3.1Ob)

is the smallest subspace containing H- which intersects S perpendi-
cularly. It is not hard to see that the two conditions not only
characterize minimality but also the splitting property.

THEOREM 3.2. [15]. Let S D H- and 9 n H be two subapaces, and
set X = S n S. Then X is a minimal splitting subspace if and only
if both conditions (3.10) hold.

In view of Proposition 3.2, (3.3a) and (3.8), it is clearly
necessary that

S c (N+)±  (3.11a)

and that

S c (N) ±  (3.11b)

in order that X - (S,S) be minimal, but not sufficient; in fact,
any subspace of Ho satisfies (3.11). However, in Theorem 3.2.,
conditions (3.10) can be replaced by (3.10a) + (3.11a) or by
(3.10b) + (3.11b), as seen from the following pair of propositions.

PROPOSITION 3.5. [14]. Let S D H- and S D H+ be two subspace8 sat-
isfying (3.lOa). Then (3.10b) holds if and only if (3.11a) holds.

I-

PROPOSITION 3.6. [14]. Let S m H- and S n H+ be two subspaces sat-
isfying (3.20b). Then (3.lOa) holds if and onZy if (3.11b) hoZds.

It follows from Theorem 3.2 and Proposition 3.5 that X is a
minimal splitting subspace if and only if S H+ v X is given by
(3.10a) and S := H- v X satisfies

H c S c (N+) , (3.12)

in which case X = SH+, as can be seen from (3.9a) and (3.10a).
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Consequently the minimal splitting subspaces are in one-one corre-
spondence with subspaces S satisfying (3.12). For this reason,

we shall call a subspace satisfying (3.12) a minimal augmented past
space. The set of such subspaces form a complete lattice, where
the partial ordering is induced by the c operation. Consequently
the set of minimal splitting subspaces also form a complete lat-
tice, in which X_ is the minimum element and X, is the maximum. In
fact, as we have seen above, S_ = H- and S+ = (N+)'.

Symmetrically, there is a one-one correspondence between the
minimal splitting subspaces and subspaces 9 such that

H+ c c (N-)± (3.13)

We shall call such a subspace a minimal augmented future space.
In terms of it, the minimal splitting subspace has the representa-
tion X = ESH-.

4. OBSERVABILITY, CONSTRUCTIBILITY AND MINIMALITY

Relation (2.4a), defining a splitting subspace X - (S,S), can
be written

ESIH + - ESIx ° EXIH+ , (4.1a)

where 1A denotes restriction to the domain A. (Here the first op-
erator on the right-hand side is merely an insertion map, insuring
that the range spaces match.) Likewise, the alternative definition
(2.4b) can be written

ix
E S IH" ESIX , EXJH -  (4.1b)

Define G+  ESIH+ and G- := E9IH-. Then the splitting property
(2.4) is equivalent to either of the two Hankel operators G and G-
having a factorization through X described by the commutative dia-
grams

SH G+ _* -__ G-[ - S H' - S

(4.2)
0 R C

respectively, where 0 EXIH + , C EXI - , R = ESj and R .= ESIx.
Such a factorization is said to be Eanoncal [32] i the first

factor (here R or R) is one-one and the second factor (here 0 or C)

4q
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maps onto a dense subset of X; if the second factor maps onto X we
say that the factorization is exactly canonical.

Since the insertion map R is trivially one-one, the first of
diagrams (4.2) is canonical if and only if

XE H+ = X . (4.3-.)

A splitting subspace with this property is said to be observable;
the mapping 0 is called the observability operator. Likewise, the
second factorization (4.2) is canonical if and only if

EXH- = X . (4.3b)

If this condition holds, we say that X is constructible; we call C
the constructibility operator [20]. If one of the factorizations
is exactly canonical, the closure bar over the E in the correspond-
ind relation (4.3) can be removed; then we say that X is exactly
observable (EH+ = X) or exactly constructible (EXH- = X) respec-
tively.

It follows from (3.9a) and the splitting property (2.4a) that
a splitting subspace X is observable if and only if

-E S = E SH+ . (4.4)

But this condition is equivalent to
:H + v S z  

(4.5)

In fact, since ESX = 0 for A e S', it is easy to see that (4.5) im-
plies (4.4). To see that (4.5) is a consequence of (4.4), first
note that, since S and S intersect perpendicularly (Theorem 3.1),
z H+ v S I (Proposition 3.4). But Z := 9 (H+ v S ) cSn (H+)-, and

therefore (4.4) cannot hold unless Z = 0. In the same way we see
that a splitting subspace X is constructible if and only if

S = H- v 9, (4.6)

and hence we have proven the following theorem.

THEOREM 4.1. Let X - (S,g) be a splitting subspace. Then X is ob-
servable if and only if (4. 6) holds and constructible if and only
if (4.6) holds.

We can now tie together the concepts of observability and con-
structibility with that of minimality, discussed in Section 3. It
follows from Theorems 3.2 and 4.1 that a splitting subspace is

tk
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minimal if and only if it is both observable and constructible.
This point can also be illustrated in the following way: Apply the
projector EH- to (2.4a) to obtain EH-X = EH-EXX for all ), E H+,
i.e. the diagram

H+ H 1H + i H-
(4.7)

commutes if X is a splitting subspace, where C* = EH-IX is the ad-
joint of the constructibility operator C = EXIH - . It is not hard
to see that C* is one-one if and only if C maps onto a dense sub-
set of X. (Cf. [36; p.89].) Consequently, in view of the equiva-
lence between minimality and observability plus constructibility
proven above, the factorization (4.7) is canonical if and only if
X is minimal. Of course, in the same way, if X is a splitting sub-
space, the dual diagram

EH+ IH- oH+
H-

\ /0(4.8)

commutes, and it is canonical if and only if X is minimal.

Finally we summarize the connections between observability,
constructibility and minimality provided by Theorems 3.2 and 4.1
and Propositions 3.5 and 3.6.

THEOREM 4.2. Let X - (S,S) be a splitting subspace. Then the fol-

lowing conditions are equivalent:

(i) X is minimal

(ii) X is observable and constructible

(iii) X is observable and S is minimal

(iv) X is constructible and 9 is minimal.

A_
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5. MARKOVIAN SPLITTING SUBSPACES

Let X - (S,S) be a splitting subspace. Then, by Proposition
2.1, X is Iarkovian if and only if the two conditions

UtS c S (left invariance) (5.1a)

and

U S C S (right invariance) (5.1b)t

both hold. It is immediately seen that X_ - (H-,(N-)') and
X, - ((N+)±,H+) satisfy these conditions, and consequently X_ and
X+ are Markovian splitting subspaces. Hence all minimal Markovian
splitting subspaces form a complete sublattice of the lattice de-
fined in Section 3, with X_ being the minimum and X, the maximum
element.

If (5.1a) holds, {0tIS; t > 01 is a strongly continuous semi-
group on S, and the same holds true for the adjoints

Ut(S) := ESUt1S ; t _ 0 (5.2a)

Similarly, if (5.1b) holds, {Utt; t a 0} and the adjoints

U t() E UtI ; t - 0 (5.2b)

both form strongly continuous semigroups on S. Operators of type
(5.2) are called compressions of the shifts Ut and Ut respectively.
Compressions with respect to subspaces other than S and S will be
denoted analogously. It can be shown that a Markovian splitting
subspace X - (S,5) is invariant for Ut(S) and Dt(S). More pre-
cisely we have:

PROPOSITION 5.1. [16]. Let X - (S,S) be a splitting subspace.
Then the conditions (5. la) and

0t(s)x C x (5.3a)

are equivalent. Similarly (5.1b) is equivalent to

ut(S)X c X . (S.3b)

Conditions (5.3) imply that for each e € X, Ut(S) = Ut(X)E
and 0t(g)E 0t(X) , where Ut(X) and Ot(X) are defined as in (5.2).

N

A
4S
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The operators Ut(X) : X - X and Ot(X) X - X will play a very im-
portant role in what follows.

THEOREM 5.1. [16]. The splitting subspace X is Markovian if and
only if {Ut(X); t 0} [{Dt(X); t a 01] is a strongly continuous
semigroup.

Hence, we shall call {Ut(X); t > 01 the forward Markov semi-
group and {Dt(X); t a 01 the backward Markov semigroup of the Mar-
kovian splitting subspace X. The following theorem describes how
these shift operators intertwine the Hankel, observability and con-
structibility operators introduced in Section 4.

THEOREM 5.2. [16]. Let X - (S,S) be a Ifrkovian splitting subspace.
Then the following diagrams comute.

G +  G-
H+  .- IS H" 10S

U t 1 U t(X) U t(S) f ~t () t(S)
x x

0 C R

I ,  , %S / 4- '

(For simplicity we write Ut and Ot in place of UtIH+ and Drj H-
respectively. )

As a corollary of this theorem, we obtain the factorization

G+Ut = RUt(X)O (5.4a)

and its backward counterpart

G-O t = O t(X)C , (5.4b)

which should be compared with the corresponding factorizations in
deterministic realization theory [32]. Relations (5.4) will be
used in Section 9.

A Markovian splitting subspace X - (S,S) is said to be proper
if both S and 9 are purely nondeterministic. [A subspace Z is
purely nondeterministic if fteRUtZ 0.] If X is proper, neither S
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nor has a doubly invariant subspace, i.e. a subspace which satis-
fies both conditions (5.1), and, moreover, X is a proper subspace
of both S and S. In fact, if X = S (say), (3.7) implies that
S c S, and hence we must have 9 = H, which contradicts the purely
nondeterministic assumption. Consequently properness of X insures
effective data reduction.

PROPOSITION 5.2. (14]. Let y be strictly noncycZic. Then all
splitting subspaces X c Ho (i.e., in particular, the minimal ones)
are proper.

Any proper splitting subspace is also purely nondeterministic
[but the opposite is not true; H- - (H',H) could serve as a counter-
example], and therefore the following result can b nplied.

PROPOSITION 5.3. [16]. Let X be a purely nondeterministic splitting
subspace. Then Ut(X) and Ot(X) tend strongly to zero as t - w.

6. SPECTRAL REPRESENTATION OF PROPER MARKOVIAN SPLITTING
SUBSPACES

Since the given process y is stationary, mean-square continu-
ous and purely nondeterministic, it has a spectral representation

y(t) J e tdP(s) , (6.1)

where integration is over the imaginary axis I and dp is an orthog-
onal stochastic vector measure such that

E{d9(iw)d9(i)J=} =1 (iw)dw (

4 being the mxm matrix-valued spectral density of y [35]. (Aster-
isk (*) here denotes conjugation plus transpose.) Moreover, y
being purely nondeterministic implies that 4 has a constant rank
p < m and that it admits a factorization [35; p.114].

A full-rank spectral factor is any mxp-matrix solution of

W(s)W(-s) = 4(s) (6.3)

such that rank W = p. To any such spectral factor we may associate
a p-dimensional Wiener process on R

U I) e s t - 1 d U(s) d; = WLd^(6.4)u(t) = s el1~ s dG Wv-Ld 64

where E{dG(iw)dui(iw)*} =- Idw, and W-L is a left inverse of W.

I7



15

Despite the fact that, in general, W has more than one left in-
verse, it can be shown [161 that d6, and hence u, is uniquely de-
fined. Let Ui denote the class of all such Wiener processes, and
let H(du), H-(du) and H*(du) be defined as the closed linear hulls
in H of {uk(t); t c T, k = 1,2,... ,p), where T is R, {t s 0) and
{t > 0} respectively. As these notations suggest, we are merely
interested in the increments of the processes u 4 U, the assumption
u(0) = 0, contained in (6.4), being for convenience only.

It can be shown [14] that each u c U spans all of H, i.e.
H(du) = H. Consequently our basic Hilbert space H consists pre-
cisely of the random variables

= f f(-t)du(t) , (6.5a)

where f varies over the space L (R) of p-dimensional row-vector
functions square-integrable on the real line (with respect to the
Lebesgue measure). This representation can be transformed to the
spectral domain to read

f =  f(iwo)du(iwo) ,(6.5b)

where w-, f(iw) is the Fourier-transform of f, defined in the L2
sense. To conform with formulations prevalent in the systems ^
sciences, formally we use the double-sided Laplace-transform, f be-

longing to the space L2P(, - dw) of p-dimensional row-vector func-

tions which are square-integrable on the imaginary axis I; we shall
write LP(I) for short. Also, we shall adopt the convention of
writing Ff to denote f. Then F is a unitary operator from L3(R)
to L (1).

For each u e U, (6.5b) defines an isomorphism between H and
LP(I). Let % H - LP(I) be the mapping

QU~
p . f . (6.6)

Then it follows from the definition of stochastic integral that Qu
is a unitary operator. As is evident from (6.5a), H'(du) consists
precisely of those n for which f c L (O,), i.e. for which f van-
ishes on the negative real line. LiKewise, H (du) consists of those
for which f E LP(--O) Then, defining the Hardy apaces H +FL (O,ao) and H- FL2 (-w,0), we clearly have QuH'(du) = H and

%H+ (du) H

The functions in H2 can be extended to the right complex half-
plane and can be seen to be analytic there [37-40]. Likewise, the

.A



lb

H;-functions, properly extended, are analytic in the open left half-
plane. Therefore we shall say that a full-rank spectral factor is
stable if all its rows belong to H4 and strictly unstable if its
rows belong to H2 . Let U f and U- ge the subclasses of U correspond-
ing to stable and strictly unstable spectral factors respectively.

LEMMA 6.1. [14]. There is a one-one correspondence between stable
ful-rank spectral factors W (determined modulo multiplication with
a constant unitary matrix) and left invariant [i. e., satisfying
(5. la)] and purely nondeterministic subspaces S D H. The subspace
S is related to W by

S = H-(du) (6.7)

where u e U' is the Wiener process corresponding to W.

LEMMA 6.2. [14]. There is a one-one correspondence between strictly
unstable full-rank spectral factors W and right invariant [i.e.,
satisfying (5.Ib)] and purely nondeterministic subspaces S : H .
The subspace 9 is related to W by

S = H+(dQ) (6.8)

where 5 e U- is the Wiener process corresponding to W.

Since y is a purely nondeterministic process, H- and H+ are
purely nondeterministic subspaces, and therefore the lemmas above
apply. Hence there is u_ c U+ such that

H'(du_) = H. (6.9)

This is the innovation process of y. Let W be the corresponding
spectral factor. In view of (6.1) and the fact that d9 = W-dG_,
Ouay(t) = eiwtaW for all t e R. But Qu H- ff H, and therefore
Tp{eiwtaW_ t : 0, a e Rm } = H+, where sp{-} denotes closed span
in H. A function W with this property is called outer [37-40];
W is the unique outer spectral factor. Likewise, there is a
6 c U- such that

H+ (dS+) = H+  (6.10)

F called the backward innovation process of y. The corresponding
spectral factor TV+ has the outer property with t < 0 and H+ ex-
changed for t ' 0 and H2. Such a function is called conjugate
outer; W+ is the only spectral factor with this property.

By Lemmas 6.1 and 6.2 there is a one-one correspondence-between
proper Markovian splitting subspaces X - (S,S) and pairs (W,W) of
full-rank spectral factors with W stable and W strictly unstable
or, equivalently, pairs (u,i]) of Wiener processes with u c U and

I
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C U_. We shall call W(W) the forward (backward) spectraZ factor
of X and u(5) the forward (backward) generating process of X. For
each such pair (W,W), we define a pxp matrix function

K = WLW , (6.11)

which we Lcall the structuraZ function of X. Although the left in-
verse W- is nonunique, it can be shown [16] that K is uniquely
defined. In fact,

dii = Kdi$ (6.12)

The structural function K will play a very important part in what
follows. Due to certain similarities with the Lax-Phillips scat-
tering operator [41], we shall alternatively call if the scattering
function. It is not hard to see that K(iw) is a unitary matrix for
each w c R. Next, we shall show that, in addition, K is bounded
and analytic in the open right half-plane. A function with all
these properties is called inner [37-40).

Now, in view of Theorem 3.1 and Lemmas 6.1 and 6.2, X is a
proper Markovian splitting subspace if and only if

X = H-(du) n H*(dRi) (6.13)

for some u E U4 and i c U- such that H-(du) and H+(dri) intersect
perpendicularly. As pointed out above, the pair (u,J) is unique,
being the pair of generating processes of X.

LEMMA 6.3. [14]. Let u c t and f -, and let W and W be the
corresponding spectral factors. Then S := H_(du) and S := H (di)
intersect perpendicularly if and only if K, defined by (6.11), is
inner.

The proof of this lemma, which can be found in [14], is based
on the vector version of Beurling's Theorem (37-40].

By Corollary 3.1, (6.13) can be written X = H-(du) 0 H-(dii),
the isomorphic image of which (under Qu) is Qux = H+ (H+K). Con-
sequently

X = f (H+K)1du (6.14)

where u E U+ is the Wiener process corresponding to W, and the
superscript . denotes orthogonal complement in H2 . We collect these
observations in the following theorem. Representation (6.14) should
be compared with the deterministic solutions of [48,49].



THEOREM 6.1. [15,16]. The subepace X is a proper Markovian split-
ting subspace if and only if (6.14) holds for someJpair (',W) of
full rank spectral Parr suhta Zs abe 'i strictly

unstable, and K :- WW is inner.

In particular, if y is strictly noncyclic, all minimal Marko-
vian splitting subspaces are given by Theorem 6.1 (Proposition 5.2).
The minimum and maximum lattice elements X_ and X+ correspond to
the pairs (W_',W.) and CW+,W+), where W_ and W+ are the outer and

conjugate outer spectral factors defined above. The corresponding
pairs of generating processes are (u_,C_) and (u+,O+). The pro-
cesses u. and 5 are the forward and backward innovation processes
respectively, and Q_ and u+ can be defined in terms of the junk
spaces through the relations H-(di.) = N- and H+(du+) = N+ . The
following result, which is a generalization to the vector case of
a result found in [38], provides a test for noncyclicity in terms
of the outer and conjugate outer spectral factor.

PROPOSITION 6.1. [14]. The process y is strictly noncyclic if and
only if there are inner functions J1, J2, J3 and J4 such that

W+ Lw_ a JiJ2 = J3 J 4  (6.15)

In the scalar case (m= 1), the structural function K is in-
variant over the set of (proper) minimal Markovian splitting sub-
spaces, but this is not so in the vector case. This point can be
illustrated by a finite dimensional example: The Kronecker struc-
ture of a concrete differential-equation representation (of the
type derived in Section 9) is uniquely determined by K, but this
structure varies with different minimal X [16].

PROPOSITION 6.2. [14]. Let X be a proper Markovian splitting sub-
space. Then X is finite dimensional if and only if its structural
function K is rational.

This proposition has two interesting corollaries.

COROLLARY 6.1. [15]. Suppose that the spectral density 4) is ra-
tional. Then all splitting subspaces X contained in the frame
space HI are finite dimensional, and all minimal splitting subspaces
have the same dimension.

COROLLARY 6.2. [15]. Suppose that 0 is rational. Then y is
strictly noncyclic.

For further discussion of the rational case we refer the
reader to Section 7 in [15], where differential-equations represen-
tations are derived by factorization of the structural function K,
using the ideas of [42].
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7. SPECTRAL DOMAIN CRITERIA FOR OBSERVABILITY
CONSTRUCTIBILITY AND MINIMALITY

Theorem 6.1 provides us with a procedure to find all proper
Markovian splitting subspaces: All possible pairs (WW) of full-
rank spectral factors with W stable, W strictly unstable, and K =
W-LW inner, inserted into (6.14), generate the whole family of such
splitting subspaces. But how can we decide whether such a pair will
provide an observable, or a constructible or a minimal splitting
subspace? We need to translate the geometric criteria of Section 4
into spectral domain language.

To this end, first note that W is a stable full-rank spectral
factor if and only if it can be written

W = WQ (7.1)

where Q is an inner function and W_ is the unique outer spectral
factor. Similarly, W is a strictly unstable full-rank spectral
factor if and only if it has the representation

(7.2)

where Q is conjugate inner (i.e. Jq is inner) and W, is the unique
conjugate outer spectral factor [37-40]. The observability condi-
tion (4.5) and the constructibility condition (4.6) can now be ex-
pressed in terms of the inner functions K, Q and Q*.

THEOREM 7.1. [15]. Let X be a proper Markovian splitting subupace,
let (7.2) and (7.2) be the corresponding spectral factors, and let
K be the structural function (6.11). Then X is observable if and
only if K and Q* are left coprime and constructible if and only if
K and Q are right coprime.

Two inner functions are left (right) coprime if they have no
common left (right) inner factor, except possibly for a constant
unitary matrix. Hence, by Theorem 7.1, X is observable if and only
if there is no nontrivial cancellation in the factorization T = qK.
But according to [43,44] (also see [39]), this is the case if and

V only if

cl(ImHT) = (H*K) " , (7.3)

where HT : Hj H+Y is the Hankel operator ITf = P 2fT and ImHTr de-

notes the range of ,c the closure, and p 2 the orthogonal pro-
jection on H+. Inte same way, X is constructible if and only if
there are no nontrivial cancellations in 'I = QK*, which statement
is equivalent to
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clCImH ) = ( "  ,K (7.4)

where Hr : H+ - H; is the Hankel operator HTf = PH2fT and I now de-
notes orthogonal complement in H2.

To clarify the nature of conditions (7.3) and (7.4), we shall
take a closer look at the Hankel operators HT and H-, along the
lines of [14]. To this end, first note that HT and HT are related
to the Hankel operators G and G- through the commutative diagrams

G + G-

H- S H- .

HTD QUQ- U (7.5)

Then it follows from (4.2) that HT and HT factor according to the
commutative diagrams

H- HT i-H + HT -WH

2 2 (7.6)

x /

where X := QuX, R= QuX, Qf = PXfT, tf = PXfT, and R and R are the
insertion maps Af =f and Rf = f.

Since R is merely an insertion, ImHT = ImO, and therefore
(7.3) is precisely the observability condition (4.3a), transformed
as in (7.5), for, by Theorem 6.1, X = (H+K)L. Likewise it is seen
that (7.4) is the same as the constructibility condition (4.3b).

However, [43,44] also contain the stronger result that (7.3)
holds with the closure operation removed if and only if K and Q"
are strongly le t coprime, i.e. infRe(s)>o{IaK(s)I + jal*(s)1} > 0for every a e R . The analogous statement holds for (7.4) and K

etand Q. Hence we have the following strong version of Theorem 7.1.

THEOREM 7.2. Let X, K, Q and i be as in Theorem ?.I. Then X is
exactly observable if and only if K and q* are strongly left co-
prime and exactly constructible if and only if K and Q are str"ongly
righ t cprime.

J1

4 .....
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In order to apply conditions (iii) and (iv) of Theorem 4.2,
we also need to characterize minimality of S and 9 in the spectral
domain. We shall say that a stable (strictly unstable) full-rank
spectral factor is minimal if it corresponds to a minimal augmented
past (future) space via the correspondence of Lemma 6.1 (Lemma 6.2).
Now, assume that y is strictly noncyclic. Then the spectral fac-
tors W. and W introduced in Section 6 are well-defined. Let Q.
and Q. be the inner factors in (7.1) and (7.2) respectively cor-
responding to these spectral factors. Moreover, let K_ and K, be
the structural functions of X_ and X+.

THEOREM 7.3. [14]. Suppose y is strictlp noncycZ c. Let W be a
stable fuZ-rank spectral factor, and Let J := W- W+. Then, J is
uniquely defined, and the following conditions are equivalent:

(i) W is minimal

(ii) Q is a left inner divisor of Q, i.e. there is an inner
function e such that Q8 - Q

(iii) J is inner.

If one of these conditions holds, J and K, are right coprime.

The fact that (i) and (ii) are equivalent was first proven in
[19] for the scalar case. The dual version of Theorem 7.3 goes as
follows.

THEOREM 7.4. [14]. Suppose y is strictly noncyclic. Let W be a
strictly unstable full-rank spectral factor, and let T :- W-LWV.
Then, j is uniquely defined, and the following conditions are
equivalent:

(i ) W is minimal

(ii) * is a right inner divisor of _

(iii) T* is inner.

one of these conditions holds, J* and K. are left coprime.

Note that the coprimeness conditions of Theorems 7.3 and 7.4
are related to T and T as follows: T - K J* and T - K.J*. This
has some significance for state space isomorphism [16].

'1
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8. ABSTRACT REALIZATION THEORY IN HARDY SPACE

We shall now translate the results of Section 5 to the spec-
tral domain, thereby laying the ground work for concrete differen-
tial-equation type representations to be introduced in the next
sect ion.

In view of (6.1), any n] e H can be written

J f fdy (8.1)

for some f c 02(1,W)., Define the unitary operator Qy :
H - L(I,Ud6) by Qvn = f, and introduce the spaces V := QyH4 and
- := QvH-, which consist of all linear functionals of the future

and past respectively of N. Then V+ = -9{aem t j a c Rm; t a 0}
and V=-{aeiwt Ia E Rm; t S 01. *Clearly, for t a 0, V*(V-) is in-
variant under multiplication by eut(e-iwt). For each t a 0, let

Y - V+ and 7t : Y- V- be the mappings Etf = eiwtf and
Itf = e-iwtf respectively. Now, for any proper Markovian splitting
subspace X - (S,S), let the operators G+ and G" be defined in terms
of the Hankel operators G+ and G- by the commutative diagrams

G +  G"

H+ 
- -'S H- -

Qy IQ V - (8.2

H+  H

Then G+f = P 2fW and G-f = P 2fW, i.e. G and G- are the Hankel
operators corresponding to the input-output maps f - fW and f - fW
respectively.

For any t >- 0 and subspace Z c L3(1), define the compreseions
Zt(Z) := PZeiwtlz and 7t(Z) :=PZe-iwtIZ, where we are slightly mis-
using notations by letting eiut also ' denote multiplication by
the function w - eiwt. Then, setting X := QuX and X := Qu-X, it is
immediately clear that ,uUt(X)Qul = Zt(X) and QU (XQ 1 = t( r )
and that Zt(Hz) and '-t(H ) are analogously relates to Ut(S) and
Ut(s) respectively. Note that {Et(X); t z 01 and {rt()); t z 0)
are strongly continuous semigroups (Theorem 5.1) which tend strongly
to zero as t - - (Proposition 5.3). We shall call them the forwardand
the backward spetraZ semigroups of X; X and X will be called the
forward and backward spectral images of X respectively. Then, by
isomorphism, the following proposition is a corollary of Theorem 5.2.

PROPOSITION 8.1. Let X be a proper Markovian splitting subspace
with generating processes (u,Q) and spectral images X QuX and
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QrX. Then the diagrans

YV + H+2 H2

oxx x

x 2.

commute, where 6f = PXfiW f pXf and R and R are the insertion
maps Rf = f and WTf = f.

By isomorphism, X is observable if and only cl{ImO} = X and
constructible if and only if cl{ImCJ = T. Clearly, since aW c X
for all a c Rm (this is equivalent to ay(O) c X, as can be seen by

inserting d9 = Wda into (6.1)), 6eiwta = Et(X)Mwa for t ; 0, where
MW: Rm X is the mapping M1ha = aW. Then, since V+ =

ae~i t j a E Rm; t z 0), clImO} = cl{UtzoIm[Z(X)Mw]). Likewise,
noting that aW for all a c Rm, cl{Imel = clUtIm[t(X)Mw]},
where M : Rm - X is defined as the mapping MNWa = aW. Hence we
have proven

PROPOSITION 8.2. Let X be a proper Markovian splitting subspace

with spectral images X and X. Then X is observable if and only if

cl{Ut oIm[zt(x)Mw]) = x (8.3)

and constructible if and only if

c{u t oIm [f-t () . (8.4)

Condition (8.3) is precisely the observability condition of a

(deterministic) dynamical system with semigroup {E (X)*; t z 0} and
read-out map (observation operator) % : X - Rm [4; p.211], and

this is precisely the role these operators will play in the differ-
ential-equation type representations of Section 9. Likewise, (8.4)
is the observability condition of a system with semigroup
{Z't(Y); t a 01 and observation operation M" : X - Rm . Since any

linear operator A from one Hilbert space V to another Z satisfies
the condition

cl{ImA} 4 ker A* = Z (8.5)

'I



~24

we may alternatively write the observability condition (8.3) as

n ker[Z (W] = 0 (8.6)

and the constructibility condition (8.4)

t_0 ker[ ( OT* 0 ,(8.7)

where ker B is the null space (kernel) of B.

It follows from (6.12) that the relationship between the for-
ward and the backward spectral image of X is given by

, X = K , (8.8)

where K is the structural function of X. Let MK  T -r X be the
mapping f fK. Then MK is a unitary operator. The following
proposition described the interplay between forward and backward.

PROPOSITION 8.3. [16]. Let X be a proper Markovian splitting sub-
space. Then the relations between its forward and backward spec-
tral semigroups and its forward and backward observation operators
is given by the commutative diagram

Et )

Rm Et(X)* I
XX

COROLLARY 8.1. The constructibility condition (8.4) can be written

cl{Ut Im[t (X)*MW]} = X (8.9)

or equivalently

V 1t>O ker[MVTZt(X)] = 0 . (8.10)

In the sequel we shall express all relations only in its for-A ward form, referring the reader to Proposition 8.3 for a recipe

to obtain the backward counterpart.

This theory also provides us with a natural factorization of
the autocorrelation function of y.

PROPOSITION 8.4. [16]. The mxm matrix function A(t) :E{y(t)y(0)'1}
has the factorizations



25(X)*N fort_ z0

A(t) = t(8.11)

MZt(X)N, for t 0

Since M and Zt(X)* are bounded operators, the), can be repre-
sented by matrices. Let {^1,'2 . }n be an arbitrary basis in
X, where, in general, n = w. (Such a basis exists, since X is
separable.) Then Zt(X) i = jaii(t)x. for some numbers {cij(t)}.
Since Zt(X) is a strongly continuous semigroup, it has a represen-
tation Zt(X) = eAt, where A is the infinitesimal generator
[39,41,45]. Therefore we shall write eFt to denote the nxn-matrix
{aij(t)}; i.e.

E (X). Mn (e Ft)iS. (8.12)j=l

Note that, unless n < o, F should not be interpreted as a matrix,
since, in general, A is not a bounded operator defined everywhere
on X. Similarly, if {el,e 2,.... ,em } is the canonical (orthonormal)
basis in Rm , we define the mxn-matrix H through the relation

n
wei = H i . (8.13)

Applying the operator Q I to this relation, we obtain

n
yi(o) = H. x (8.14)

j=l 23 3

where {xl,x 2 ,... ,xn} := {QnI2IQIl2, .. Qul1n} is a basis in X.
Relation (8.14) illustrates the fact that H is a matrix of the ob-
servation operator. Define P to be the nxn covariance matrix with
components

Pij = E{xixj . (8.15)

Then it is clear from (6.Sb) that

P.. <  
,i'Xj >X (8.16)

where <','>x denotes inner product in the Hilbert space X.

We are now in a position to formulate the results of this
section in matrix form. For t a 0, Proposition 8.4 yields

A
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= <zt (X)ejei .e. >X (8.17)

But, combining (8.12) and (8.13), we have

Et(X)M ei  (He Ft)... (8.18)
j=l 3

which inserted into (8.17) together with (8.13) yields

A(t) = He FtPH' for t k 0 (8.19a)

after applying (8.16). In the same way, letting eF't denote the
transpose of eFt, we have

A(t) = HPe- F'tH' for t _< 0 . (8.19b)

To obtain matrix representations for the backward operators,
first note that {, } where xi = MR x i (i=1,2,...,n),
is a basis in X. By applying Mj to (8.13), we see that MW-has the
matrix H with respect to this basis. However, for the semigroup
the situation is a bit more complicated. For t - 0, define the
nxn-matrix e~t by

Z () = (eFt) (8.20)

- ' j=l 13 * 
(

which, by Proposition 8.3, can be written

n
zt(X)* i = I (e-Ft).. (8.21)

j=l i

for all t 'a 0. Then, taking (8.16) into account, inserting (8.12)
and (8.21) in the defining relation

<Ritzt{X)xJ> = <Zt J(X)R * 'x.>

yields

e -t = Pe-FtP -I  for t >_ 0 , (8.22)

which should be compared with the corresponding result in [8).
(Also see [46] for the original wide sense result.)

,A



Finally, it is not hard to see that the observabilitv criterion
(8.6) has the matrix formulation

(t1>O ker(HeFt) = 0 (8.23)

and that the matrix version of the constructibility criterion (8.7)
reads

t<0 ker(He Ft)= 0 (8.24)

9. DYNN4ICAL REPRESENTATIONS OF MARKOVIAN SPLITTING
SUBSPACES

At this point the abstract realization problem has been solved.
All proper Markovian splitting subspaces have been determined, and
the corresponding semigroups and observation operators have been
characterized. The problem is now to what extent these abstract
realizations can be represented by stochastic differential equations.

Let X be a proper Markovian splitting subspace with forward
generating process u. We shall say that y admits a reguZar (for-
ward) realization with respect to X if, for some Hilbert space S,
there are a strongly continuous semigroup {eAt; t _ O) on S and a
bounded operator B : RP -+ S such that

{ I <c,e-Aa Bek>Sduk (a) c E ,X (9.1)0

where <-,'>S denotes the inner product in S and {ele 2 ,...,eP} is
the canonical basis in RP . [Of course, in order that (9.1) ebe
well-defined, the function t '- <c,eAtBek> must belong to L2(O,-)
for all c e S and k = 1,2,...,m, so this is implicitly assumed in
the definition.] Then, since yi(O) c X for each i = 1,2,...,m,
there are cl,c 2,...,cm E S such that

y(O) P 0 <c.,e-ABek> duk() (9.2)
k=l -

Define the operator C : S - Rm in the following way (since we shall
have no further use of the constructibility operator, we shall take
the liberty to give a new meaning to C): Let Cf be the m-dimensional
vector with components <ci,f>S, i = 1,2,... ,m. Then C is a bounded
operator, and (9.2) can be written

A_ / .. , I .. .. .
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0) f 0 Ce-AcBdu(o) (9.3)
-_oo

We shall call such a representation a (forward) regular reaZiza-

tion of y with respect to X, the word "regular" referring to the
boundedness of the operators eAt, B and C and "with respect to X"
referring to property (9.1). The Hilbert space S will be called
the range space of the realization, X the state space. Applying
the group {Ut; t c R) of shift operators to (9.3) we obtain

y(t) = ft CeA(ta)Bdu(o) (9.4)

for each t c R, as can be seen by a simple change of variables.

Formally we can write (9.4) as

x(t) = f eA(t-) Bdu(c)
ED 

(9.5)

y(t) = Cx(t)

where the state x(t) takes values in S. However, in doing so, we
shall have to be careful. Unless dim S < -, x(t) cannot in gen-
eral be defined as a Hilbert space-valued random variable in the
usual sense [45,47). For this to be possible the covariance oper-
ator must be nuclear, and, as we shall see below, this is usually
not the case. However,{x(t); t E R} can be interpreted as a weak
Markov process, by using the theory for weak random variables de-
veloped by Balakrishnan [45); for a discussion of this, see [16].
In any case, we may formally write the realization in the differ-
ential-equation form

dx = Axdt + Bdu
(9.6)

y = Cx

to be interpreted either by (9.4) or (9.5), the latter requiring
)1 the theory of [45].

From (6.4) and (6.5) we have

y(O) = J w(-c)du(a) , (9.7)

where w = F'W is the inverse Fourier transform of the spectral

.4
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factor W. Comparing (9.3) and (9.7) it is seen that, in general,

there is no regular realization with respect to an arbitrary X,
since w must be continuous for this to be the case. Nevertheless,
as we shall see below, the regular realizations are, in a sense,
dense so that we can always find one that is an arbitrarily good
approximation. Let us assume, for the moment, that y does admit a
regular realization with respect to X. Then we may ask the question
whether any deterministic realization w(t) = ceAtB which is regular
(i.e. B and C are bounded [48,491) would do the job. To answer
this question, note that, for t - 0,

nt) 0n A-t -Aa

E yi(t) = J <eA tcie Bek>Sduk(O) , (9.8)

where eA*t denotes the adjoint of eAt, and that, by the splitting
property (2.4), ESyi(t) = EXyi(t). Therefore, forming the closed
span of (9.8) over all 0 and i = 1 2 ..,m, it is seen that
(9.1) is satisfied if XH+ = X and 9p{eA tc." t a 0, i = 1,2,... ,m} =
S. Hence, if X is observable and the pair tC,A) is observable in
the deterministic sense [45], the answer to our question is "yes."
For an arbitrary proper Markovian splitting subspace X, however,
things are more complicated. This should be expected, since in
general two spectral factors, namely W and W, are needed to charac-
terize X, whereas in the observable case W is uniquely determined
from W via (4.5). Also it is reasonable to require that the range
space is as small as possible. This is achieved by requiring that
(A,B) is controllable [45]. Note, however, that the controllability
condition has nothing to do with the splitting subspace X, but is
desired merely in order to obtain a range space S "of the same
size" as X.

In view of the results of Section 8, this suggests that we
try to use the spectral image X of X as a range space. To this
end, we first need to introduce the concept of regular splitting
subspace. Let t be the class of all functions in LP(I) having a
continuous inverse Fourier transform. (Note that L 1 I) n L2(0) is
a proper subset of C.) Then, in view of (6.5), X c C if the regu-
larity condition (9.1) holds, and therefore the operator V0 :
X - RP given by V0f = (F-

1 f)(0) is defined on all of X. We shall
say that X is a regular splitting subspace if V0 is a bounded oper-
ator.

LEMMA 9.1. [16]. Let X be a proper Markovian splitting subspace
and let X :=^QuX be its spectral image. Then X is regular if and
only if X c C.

Clearly all finite dimensional X, if there are any, are regu-
lar. The following lemma is a corollary of Proposition 8.1.

ivJ



30

LEMMA 9.2. [16]. Let e X and let F-1 . Then, for each
t 0,

+ ) = (F X))() (9.9)

for almost all a on [Oo).

Now, let X be a regular splitting subspace, and let a E Rm.
Then, since aW E X c C (Lemma 9.1), aw(t) is continuous and
Lemma 9.2 yields

aw(t) = V0Zt(X)Mwa . (9.10)

lIt can be seen [16) that (9.10) corresponds to the factorization
(5.4a).] This leads to the factorization described by the commu-
tative diagram

M

Rm w(t) RP

MW Zt(X) V0 (9.11)

X X

where Mw(t) denotes multiplication from the right by the matrix
w(t). Since matrix multiplication from the left is the adjoint of
multiplication by the same matrix from the right,

w(t)b = (Vot(X)Mw)*b (9.12)

Now, Et(X) and MW are bounded operators, and regularity of X in-
sures that V0 is bounded also. Therefore (9.7) and (9.12) yield
after applying the shift

It
"}y(t) = * .~ (X) *V~du(c) (9.13)

f' -0 - 0 0

K This is a regular realiza tion with respect to X, as is seen from
the following theorem.

THEOREM 9.1. [16]. The process y has a regular realization with

respect to X if and only if X is a regular splitting subspace. In
this case, the range space can be taken to be X := QX and eAt , B
and C to be Et(X)*, Va and NV respectively.

We shall call (9.13) the standard (forward) realization corre-
sponding to X. We have already encountered the observation operator

JJ
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M* and the Markov semigroup Et(X)* in Section 8, where conditions
for observability and constructibility were given. It can be
shown [16] that the standard realization is spectrallZy minimal
[39], and that the pair (Et(X)*,V*) is exactly controllable. The
covariance matrix of x(O) is the identity I, and therefore the
corresponding representation (9.5) must be interpreted in the weak
sense.

Obviously, if y admits a forward regular realization with re-
spect to X, it also admits a backward one. In particular, the
analysis above can be carried out in the backward setting also to
yield the standard backward realization

y(t) =ct)*d()(9.14)

corresponding to X. The relationship between the operators in
(9.13) and (9.14) is described by Proposition 8.3 and

V = M V (9.1S)0 KO0

Also it is not hard to see that R(O) := MRlx(o) is the state cor-
responding to the standard backward realization.

However, an arbitrary proper Markovian splitting subspace will
in general not be regular, since F-IQuX may contain functions which
are not continuous (Lemma 9.1), and in this case y will have no
regular realization with respect to X (Theorem 9.1). (Note that
this situation is unique to continuous-time processes; in the dis-
crete-time setting all X are regular, since the evaluation operator
V0 is always bounded.) We shall show, however, that in each X
there is a dense subset of random variables & such that each pro-
cess &(t) := Ut& admits a regular realization with respect to a
subspace of X.

Our basic strategy will be to convolute each function in
F-lQuX by a scalar L2 function 0. The resulting functions will be
continuous [50; p.398] and consequently the techniques described
above can be applied. Hence define the subspace Xo c H to be

X = *F[0 * (F' 1 Qux) ]  (9.16)

Also let Bo : RP - X be the bounded operator defined by Bob =
PX(Fo.b), where X = QuX and 0_(t) :- 0(-t).

PROPOSITION 9.1. (16]. Let € c L2(O,-). Then Xo c X. Moreover,
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X= { <_ (X)*B ek>xduk(O) 0 X (9.17)

where {eje 2 -... ,ep) is the canonical basis in RP .

Here (9.17) should be compared with (9.1). Even if y does
not admit a regular realization with respect to X, it can be approxi-
mated uniformly closely by another process which has a regular re-
alization with respect to X c X.

PROPOSITION 9.2. [16]. For any e > 0, there is a 0 E L2 (O,w) such
that, for all t c R and k = 1,2,...,M,

[[yk(t) -yk(";) 11 < F

where
t.

y(t;O) = J t_o(X)*B du(o) (9.18)

Note that the only difference between (9.13) and (9.18) is
the B-matrix. For the moment, let B denote either V* or B0, and
let {i,,2 .. ,} be the canonical basis in RP , {el,ei,...,e m }
being reserved fgr Rm as in Section 8. Let h(t) :=NI Et(X) B.
Then

h. (t) = <ei,M t(X)*Bi.>
13 tRm

= <B*It(X)M,ei,e > Rp (9.19)

Now, let n be the (usually infinite) dimension of X, and let
{X,X 2;.... 'n } be the basis in X introduced in Section 8. Let eFt
and H be the matrices of Zt(X)* and N% respectively as defined by
(8.12) and (8.13), and let C be the corresponding matrix of B, i.e.

n
B*x. = G ij Z (9.20)

Then it follows from (9.19) that h(t) a HeFtG, i.e. (9.13) or (9.18)
has the matrix representation

~~~~(t-O)Buo) e
y(t) = Bdu() (9.21)

which, taking due care to properly define the possibly infinite-
dimensional state, can be written in differential-equation form.
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